The generator matrix

 1  0  0  0  1  1  1  6  1  1  1  1  1  1 2X  1  3  1  1  1  1  1  1  1  1  1  1  1  1  X  1  1  1  1  1  1  6  1  1  1  1  1
 0  1  0  0  6  1  4  1  X X+3 2X+8 X+1 X+2 2X+4  1 2X+1  1  8  7 2X+5 X+7  5 2X+3 2X+4 2X+6  X 2X 2X+2 2X+3  1 X+5 X+3 2X+2 X+3 2X+1 X+7  1 X+2 X+4 X+2 2X+5 X+6
 0  0  1  0 2X+7 2X+1 X+5 2X+4 X+1 X+8 X+3 2X X+4  5  4 2X+1 X+6 X+7  3 X+2 X+3  X  6 2X+8  8  7 X+3 2X+3 2X+5  8 2X+5 2X+4 X+8  X  0  1  6 2X 2X+5  0 X+8 2X+8
 0  0  0  1 2X+5  3 2X+2 2X+2  1 X+3 X+7  6 2X+3 X+1  7  8  8 X+7  7 X+2  2 2X+6 2X+1 2X+6  2  0 2X+8  5  4 X+6 2X+4  4  3 2X+1 2X+5 X+1 2X+3 2X+5 2X+8 2X+3  5 2X+3

generates a code of length 42 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 74.

Homogenous weight enumerator: w(x)=1x^0+570x^74+1256x^75+4620x^76+6918x^77+12644x^78+18324x^79+23958x^80+40128x^81+48384x^82+55920x^83+74926x^84+71874x^85+58224x^86+52636x^87+32184x^88+16194x^89+8072x^90+3312x^91+948x^92+58x^93+132x^94+72x^95+54x^96+18x^97+6x^98+6x^99+2x^102

The gray image is a code over GF(3) with n=378, k=12 and d=222.
This code was found by Heurico 1.16 in 335 seconds.